What do I need to be able to do?

You should be able to:

- · Understand properties of addition and subtraction.
- Understand properties of multiplication and division.
- · Use formal methods of addition and subtraction for integers.
- · Use formal methods of multiplication and division for integers.
- Add and subtract directed numbers.
- · Multiply and divide directed numbers.
- · Understand and use order of operations with positive and negative integers.

Addition

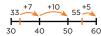
Addition is commutative.

The order of addition doesn't change the result.

Formal Written Method

Remember the place value for each column!

Addition is associative.



6 + (3 + 4) = (6 + 3) + 4

It doesn't matter how you group the numbers.

Models to Help with Addition

Number Lines

So we can sav 33 + 7 + 10 + 5 = 55 or 33 + 22 = 55

Bar Models

Part/Whole Diagrams

Key Words

Commutative	Changing the order of operations does not change the result.
Associative	When you add or multiply you can do so regardless of how the numbers are grouped.
Inverse	The operation that undoes what was done by the previous operation.
Subtract	Taking away one number from another.
Negative	A value less than zero.
Debit	Money that leaves a bank account.
Credit	Money that goes into a bank account.
Integer	A whole number.
Operation	A mathematical process.

Subtraction

Subtraction is **not** commutative or associative. 12 - 8 ≠ 8 - 12

When you subtract, the

Formal Written Method

н Т U 23 12

5

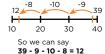
2 1 6

3 1

2

0 8

0 \cap


4

Remember 0 is a

place holder!

order must stay the same.

Models to Help with Addition

or 9 - 27 = 12

Bar Models

Part/Whole Diagrams

Written Methods for Multiplication

Long Multiplication	Grid Me	ethod			Gelosia	Rep	eate	d Ad	ldition
2 4 7 X 1 2 3	×	200	40	7	2 4 7 X		Н 2	т 4	U 7
7 4 1	3	600	120	21	0_{6} 1_{2} 2_{1} 3_{1}	+	2 2	4 4	7
	600	0 + 120	+ 21 =	741	/7 /4 /1		7	4	1
Written Methods for Div	ision						1	2	

Short Division

	0	4	2	
6	2	² 5	¹ 2	
	1	ο	2	

Order of Operations

Example 1

(4 x 7) + 3

So we need to evaluate the brackets first; $4 \times 7 = 28$ This is now 28 + 3 = 31

Calculations with Directed Numbers

Addition

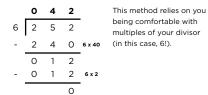
2 + - 3

Remember; If I add a negative, I am adding something that will make it smaller, so it is the same as subtracting that number!

2 -3 = -1

Subtraction 2 - - 3

Remember; If I subtract a negative, I am taking away the amount that was making it smaller, so it is the same as adding that number!


2 + 3 = 5

Generalisation: + - = ---=+

Short Division (with Remainders)					
	1	2	5.5		
2	2	5	¹ 1. ¹ 0		

1
Continue after the decimal
point! If you start to get a
repeating decimal, stop.

Long Division

Example 2

$(6 + 4 - 3)^2 \times 4$

So we need to evaluate the brackets first and we work left to right; 6 + 4 - 3 = 7

This is now $7^2 \times 4 = 49 \times 4 = 196$

Multiplication

'2 lots of -3' = -6

Think of this as the

Generalisation:

negative of $2 \times -3 = 6$

2 x -3

-2 x -3

Example 3

4 - 8 x 2 + 12 ÷ 4

So first we do the multiplication/division left to right; 4 - 16 + 3

Now we do the addition/ subtraction from left to right: -12 + 3 = -9

Division

Remember that multiplication and division are inverse operations.

E.g. $6 \div -3 = -2$ $-6 \div 2 = -3$

Models to Help

It can be helpful to put calculations involving directed numbers into real life contexts. Think about temperate or bank accounts when unsure.

Number ATHS

(with Remainders)	LON	,	/1310			
5. <mark>5</mark>		ο	4	2		
¹ 1. ¹ 0	6	2	5	2	-	
ter the decimal	-	2	4	0	6 x 40	
start to get a		0	1	2	-	
ecimal, stop.	-	0	1	2	6 x 2	
					-	

Skills

What do I need to be able to do?

You should be able to:

S

tion

Ú

Ŋ

11

 \mathcal{O}

- Understand different representations of fractions
- Fully simplify fractions
- · Recognise and find equivalent fractions
- Convert between mixed numbers and
- improper fractions
- Add/subtract any fractions
- Add/subtract mixed numbers

Representing Fractions 00 numerator ____ > 4 denominator We say 'three quarters' or 'three out of four' All of these show — Mixed Numbers and Improper Fractions 1 numerato $\bigcirc \bigcirc$ 1 —

 \bigcirc denominator 10 3 \bigcirc

Fractions can represent more than one whole.

The denominator tells us how many parts make up one whole

This tells us that one whole is made up of 5 parts. We have 9 parts, so we can make one whole plus 4 parts.

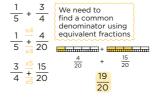
4 1

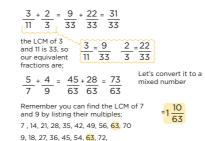
3 <u>-</u> 3

4

0 1 2

 $1\frac{1}{4}$


Kev Words


- Numerator: the top number of a fraction
- Denominator: the bottom number of a fraction
- Equivalent: of equal value
- Mixed Number: a number with an integer and a proper fraction
- Improper Fraction: a fraction where the numerator is larger
- than the denominator
- Coprime: two numbers which share no common factors (except 1)

Adding/Subtracting Fractions Common denominators

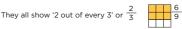
Adding/Subtracting Fractions Different denominators

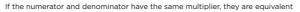
4

2

You must always

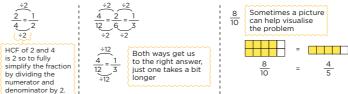
fully simplify your

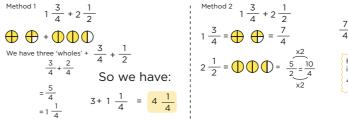

fractions


÷2

Equivalent Fractions

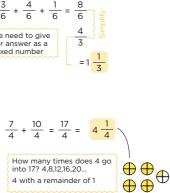
Two fractions are equivalent if they represent the same quantity


Each of these diagrams represents an equivalent amount


Simplifying Fractions

Adding/Subtracting Fractions Common multiples

$\frac{3}{5} + \frac{1}{10}$ $\frac{3}{4} - \frac{1}{12}$	$\frac{3}{4} - \frac{1}{12}$	$\frac{1}{2}$ +
10 is a multiple of 5 (5 x 2) so, using equivalent fractions	12 is a multiple of 4 (4 x 3) so, using equivalent fractions we $\frac{3}{4} = \frac{9}{12}$ can say:	Here, v comm
we can say: $\frac{3}{5} = \frac{6}{10}$	$\frac{9}{12} - \frac{1}{12} = \frac{8}{12}$ Remember you must always fully simplify	$\frac{3}{6}$ +
$\frac{6}{10} + \frac{1}{10} = \frac{7}{10}$	$=\frac{2}{3}$ {your fractions}	We nee our ans mixed n


Adding/Subtracting Mixed Numbers

This fraction is fully simplified as 7 and 10 have no common factors. We can say that 7 and 10 are COPRIME

$$\frac{2}{3} + \frac{1}{6}$$

we know that 2 and 3 share a $\frac{1}{2} = \frac{3}{6}$ and $\frac{2}{3} = \frac{4}{6}$

